
© 2007 Collaborative Consulting

877-376-9900

www.collaborativeconsulting.com

Document Centric SOA

Jeremy Deane, Technical Architect, jdeane@collaborative.ws, November 2007

TABLE OF CONTENTS

1. DOCUMENT CENTRIC SOA 2

1.1 BACKGROUND 2

1.2 EXCHANGING BUSINESS DOCUMENTS 2

1.3 SERVICE IMPLEMENTATION OPTIONS 3

1.4 RESTFUL DOCUMENT CENTRIC SERVICES 4

1.5 SERVICE PROVISIONING 5

1.6 SERVICE GOVERNANCE 6

1.7 SUMMARY 7

2. REFERENCES 8

LIST OF FIGURES

Figure 1 Remote Procedure Call vs. Document-Literal 2

Figure 2 Document Centric Services 3

Figure 3 SOAP vs. REST 4

Figure 4 RESTFul Document Centric Service 5

Figure 5 NetKernel Enterprise Service Bus 6

Figure 6 Actional Business Process Visibility 7

Collaborative Point of View

© 2007 Collaborative Consulting

877-376-9900

www.collaborativeconsulting.com

Documents consist of Extensible
Markup Language (XML), ideally in
canonical form1, with their structure
defined by an XML schema (XSD). It
also is possible for XML documents
to be defined by more than one XSD.
In aggregate, the schemas define a
vocabulary and grammar for creating
business documents. Consequently,
an enterprise domain model,
decoupled from the various
application details, is created. And
any XML-enabled application can
process or exchange these business
documents based on the enterprise
domain model.

Collaborative Point of View

1. Document Centric SOA

1.1 Background

Service Oriented Architecture (SOA) is
an approach for building software
services, regardless of location or
ownership, that map directly to
business processes. This approach
promotes a flexible enterprise
architecture that adapts quickly to
ever-changing business requirements.
For instance, a new service can be
composed of existing services,
creating a new business process, or
can simply delegate to another
service, extending a business process.

Many of the early SOA adopters
implemented services based on
Simple Object Access Protocol
(SOAP) and remote procedure calls
(SOAP-RPC). However, SOAP-RPC
services tended to have fine-grained
interfaces resulting in redundant
exchanges between the consumer
and service provider. Synchronous
calls blocked both the consumer and
service provider during each
exchange. Thus, this type of
interaction tightly coupled the
consumer and service provider.

The current industry trend is to
implement document-style services.
This type of service still exchanges a
message consisting of a header and a
body but instead of RPC parameters,
the body now consists of an XML
document. For instance, document-
style SOAP services can be
implemented by defining the body of
the message as XML, also known as a
document-literal approach (SOAP-
XML).

1.2 Exchanging Business
Documents

A service exchanging a document,
promotes loose coupling in that a
consumer easily could use a different
service provider that accepts the
same document or the service
provider could implement the
underlying document processing
logic in a variety of ways without
changing its interface. A document
centric approach can also limit
temporal coupling, the degree to
which a consumer and provider are
locked during their exchange,
because it supports both
synchronous and asynchronous
interactions . In addition, document
centric services generally have
course-grained interfaces and
consequently, scale and perform
better then finer-grained remote
procedure calls.

HTTP HEADERS

HTTP Request or Response

HTTP Body

SOAP Envelope

SOAP HEADERS

SOAP Body

RPC Parameters

SOAP- RPC

HTTP HEADERS

HTTP Request or Response

HTTP Body

SOAP Envelope

SOAP HEADERS

SOAP Body

XML Document

SOAP- XML

Figure 1 Remote Procedure Call vs. Document-Literal

2 1W3C Canonical XML Recommendation

3

Collaborative Point of View

The Document Centric Services
Model, Figure 2, comprises several
services exchanging documents. Data
is submitted from a client browser to
a web application for processing. The
web application transforms the HTML
Form data into XML documents
defined by several XML schemas.
These XML documents are then
passed onto services for processing
where the entire document or parts of
the document are read or updated
using a Pipes and Filters approach.

1.3 Service Implementation Options

Document centric services can be
implemented using SOAP-XML or
REST-XML2. Both support a business
process, however, they differ in their
approach. SOAP-XML, invoked using
WSDL defined interfaces, focuses on
an activity. REST-XML, invoked using
an application protocol, focuses on a
resource, identified by a unique ID.
The difference is in the semantics,
registering to vote is an activity while
submitting a voter registration
document is updating a resource.

A key benefit of SOAP-XML is
transport independence.
Unfortunately implementing SOAP-
XML services requires adhering to a
large set of fluctuating WS-*
specifications. Consequently, SOAP-
XML services tend to be more
complex than REST-XML services. For
example, if adhering to the all
specifications, it would take the
following steps/tasks to implement a
SOAP-XML service:

© 2007 Collaborative Consulting

877-376-9900

www.collaborativeconsulting.com

Figure 2 Document Centric Services

Client Laptop

<<execution environment>>

Browser

Registration
Page

From Data

<<artifact>>

Person XSD
<<artifact>>

Affiliation XSD

<<document>>

Voter Registration XML

Linux Server

<<execution environment>>

Municipal Web Application

Registration
Service

<<artifact>>

Person XSD

<<document>>

Recycling Registration XML

<<artifact>>

Credit Card XSD
<<artifact>>

Recycle XSD

Voter Registration XML

Recycling Registration XML

Linux Server

<<execution environment>>

Municipal Web Application

Recycling Bill
Service

Voter
Registration

Service

Web Service Web Service

Unix Server

<<execution environment>>

Waste Mgmt. Application

Waste
Management

Service

Web Service

Re
cy

cl
in

g
Re

gi
st

ra
tio

n
X

M
L

2Representational State Transfer (REST) originated from Roy Thomas Fielding's PhD Dissertation

© 2007 Collaborative Consulting

877-376-9900

www.collaborativeconsulting.com

Collaborative Point of View

1. Model the process using Business
Process Modeling Notation
(BPMN)

2. Define a service interface using
WSDL and register the service with
a Universal Description, Discovery
and Integration (UDDI) repository.

3. Generate Business Process
Execution Language (BPEL) scripts
using the BPMN that access the
services from the service registry.

4. Define policies governing access to
the service using WS-Policy.

On the other hand, REST is based on
a small set of widely-accepted
standards, such as HTTP and XML,
requiring far fewer development
steps, toolkits and execution engines.
Thus, the three key benefits of a
RESTful approach include a lower cost

of entry, quicker time to market, and
flexible architecture. The clear choice
for implementing document centric
services is to use a RESTful approach.

1.4 RESTful Document Centric
Services

A RESTful service provides access to a
resource, identified by a Universal
Resource Indicator (URI), over HTTP3.
The HTTP verbs (e.g. GET, PUT, POST,
and DELETE) define the interactions
between consumer and service. A
service returns a resource
representation containing information
about the resource’s state. In turn,
when a service receives a resource
representation from a consumer, the
service can update the existing
resource or create a new resource.
Finally, a consumer can request the
service to delete a resource.

The most common resource
representation format is an XML
document, optionally defined by an
XSD. A resource representation often
contains not just data but links to
other resources as well. The resource
representation and links represent a
snapshot of the application state
within a shared context including the
consumer and service provider. While
each service request results in an
updated application state, a specific
resource’s state only changes in the
case of a PUT, POST or DELETE.

The Request and Response messages
implement a standard format that
includes a header and a body. Since
the RESTful services are stateless, the
security information must be passed
in each request. To secure a request,
authentication tokens and digital
signatures are placed in the header
while the body of the message is
encrypted.

RESTful services can be written in any
language that provides an interface to
HTTP. In fact, several frameworks exist
for both scripting and compiled
languages including Django (Python),
Restlet (Java), and Ruby on Rails.
Another approach is to build RESTful
services using a resource-oriented
computing platform, such as 1060
NetKernel. These frameworks and
platforms abstract the complexities of
working with HTTP and XML,
resulting in rapid deployment of
RESTful services.

HTTP HEADERS

HTTP Request or Response

HTTP Body

SOAP Envelope

SOAP HEADERS

SOAP Body

XML Document

SOAP- XML

HTTP HEADERS

HTTP Request or Response

HTTP Body

XML Document

REST - XML

Figure 3 SOAP vs. REST

4 3A RESTful service can also be invoked asynchronously using the Request-Reply Integration Pattern

© 2007 Collaborative Consulting

877-376-9900

www.collaborativeconsulting.com

Collaborative Point of View

While REST and XML provide a
foundation for implementing
Document Centric Services, service
provisioning, monitoring and
management require additional
enterprise capabilities. An Enterprise
Service Bus (ESB) solution provisions
services from a central location
eliminating the point-to-point
communication between consumer
and service provider. A Service
Governance solution monitors and
manages service usage.

1.5 Service Provisioning

An Enterprise Service Bus (ESB)
provides a platform for service
provisioning. The core capabilities
that enable provisioning across an
enterprise include addressing, routing
and transformations. The ability to
specify the location of a service
regardless of transport is addressing.

SMTP) enabling integration across a
heterogeneous enterprise. Finally,
NetKernel has a SOAP engine
enabling it to consume SOAP-XML
services also.

In figure 5, NetKernel Enterprise
Service Bus, a client application,
sends an XML document to a Web
Server using an HTTP PUT Request.
The Web Server applies security filters
to the request, such as a SQL
injection check, forwards on the
request to NetKernel, and informs
the client that the request was
accepted but might be processed
asynchronously. NetKernel sends the
original XML document to the
PeopleSoft application using JMS.
Finally, NetKernel uses another
resource to transform the XML
document into an ASCII text file and

Service routing defines a message
path across a number of servers or
nodes and transformations are
implemented using XML technologies
such as XSLT and proprietary
adapters. Advanced ESB capabilities
include registration and orchestration
of services.

Although several ESB
implementations such as Codehaus
Mule support REST, only 1060
NetKernel is built upon a RESTful
Micro-Kernel. NetKernel is a
middleware server providing the core
ESB capabilities such as addressing,
routing and transformations. In
addition, NetKernel can act as the
service registry and service
orchestration engine. The server
supports a number of different
transport protocols (e.g. HTTP, JMS,

Figure 4 RESTFul Document Centric Service

HTTP GET Request

Laptop

<<execution environment>>

Browser

Client

Linux Server

<<execution environment>>

Web Server

Service

<<document>>

XML

<<document>>

XHTML

HTTP Response: 200 (OK)

5

© 2007 Collaborative Consulting

877-376-9900

www.collaborativeconsulting.com

Collaborative Point of View

sends the file onto the Oracle
database using FTP.

1.6 Service Governance

A Service Governance solution
provides an accountability framework.
Service accountability is required
since a service may span lines of
business or several organizations.
Governance ensures that services are
not overused, or worse misused, by
enforcing policies and maintaining
service level agreements.

A number of exceptional products
exist for implementing SOA-XML
service governance. However, not all
the steps in a business process flow
are based on a SOAP transaction. In
fact, part of a flow could involve
sending an ASCII file using FTP or
part of the flow could be
implemented using REST-XML.

dependencies between service
consumers and producers. It is then
possible to analyze the process flows
to determine if operational issues
exist. In addition, policies can be
defined and applied to parts of or the
entire process flow. In other words,
the product provides centralized
policy management and distributed

Conventional governance products
cannot provide the type of visibility
necessary to implement enterprise-
wide governance. One unique
product that provides a complete
solution is Actional SOA
Management4.

Actional auto-discovers the process
flows within an enterprise, regardless
of transport (e.g. HTTP, JDBC, and
JMS), and determines the

Figure 5 NetKernel Enterprise Service Bus

Unix Server

<<execution environment>>

Application Server

Client
Application

Linux Server

<<execution environment>>

Oracle Database

Data
Warehouse

Linux Server

<<execution environment>>

PeopleSoft

Benefits
Application

Linux Server

<<execution environment>>
NetKernel

<<execution environment>>

Apache Web Server

Linux Server<<document>>

XML

<<document>>

XML

<<document>>

XML
<<document>>

XML

Security Filtering

Route and Transform Document

XML

HTTP GET Request

HTTP Response: 200 (OK)

Fo
rw

ar
d

FTP JMS

Trusted
Zone

Demilitarized
Zone

6 4Actional SOA Management Product Suite

© 2007 Collaborative Consulting

877-376-9900

www.collaborativeconsulting.com

Collaborative Point of View

run-time enforcement.

1.7 Summary

A Document Centric SOA consists of
reusable services exchanging business
documents. Using schemas to define
the contents of the documents
creates an enterprise domain model
independent of a platform or
application. An enterprise domain
model provides an organization with
architectural agility since integrated
systems do not rely on each other’s
message structure or data types. Thus
the replacement of a system of
record, such as legacy application,
may require an update to the ESB but
will have little or no impact on the
consuming applications.

Using a RESTful approach to
implement document-centric services
lowers the initial cost of entry and
increases the time to market. REST is
preferred over SOAP because REST is
based on the stable principles of the
web rather than a set of ever
changing vendor-driven specifications.
In addition, REST is far less complex
than SOAP, requiring less
development and fewer processing
steps. And because RESTful services
are stateless and cacheable, they
often provide superior performance
and scalability.

As an organization’s SOA matures, it
can deploy enterprise systems for
provisioning, monitoring and
managing document-centric services.
An Enterprise Service Bus centralizes
access to services eliminating the
point-to-point communication

addition, services are discoverable
and can comprise other services.
Finally, service interfaces are defined
by a formal contract that conceals the
underlying logic. A document-centric
SOA not only adheres to these
principles but offers an approach that,
if implemented incrementally, reduces
the initial cost of entry to SOA. In the
long run, this approach maximizes an
organization’s ROI, increases its
capabilities and enables true
enterprise governance.

between consumer and service
provider. Decoupling the service
consumer from the service provider
results in additional enterprise
architectural agility. A Service
Governance solution adds an
additional layer within the enterprise
architecture ensuring document-
centric services comply with all
applicable regulatory, competitive
and operational requirements.

In his book Service Oriented
Architecture, Thomas Erl proposed a
set of principles that hold true for all
software services. Services are loosely
coupled, reusable, and stateless. In

Figure 6 Actional Business Process Visibility

7

© 2007 Collaborative Consulting

877-376-9900

www.collaborativeconsulting.com

Collaborative Point of View

2. References

Service Oriented Architecture
• OASIS SOA Reference Architecture

http://www.oasisopen.org/committees/download.php/19679/soa-rm-cs.pdf

• Service-Oriented Architecture: Concepts, Technology, and Design by Thomas Erl
http://www.soabooks.com/chapters2.asp

• Resource Oriented Computing

http://1060.org/upload/IntroductionToResourceOrientedComputing-1.pdf

• Understanding Enterprise Service Bus Part I-III by Rick Robinson
http://www-128.ibm.com/developerworks/webservices/library/ws-esbscen/

• Understanding SOA Governance by Lori MacVittie

http://www.networkcomputing.com/showArticle.jhtml?articleID=191203018&queryText=centrasite

Web Services
• W3C Web Services Architecture

http://www.w3.org/TR/ws-arch/

• Web Services: Concepts, Architectures and Applications by Alonso, Casati, Kuno & Machiraju

http://www.inf.ethz.ch/personal/alonso/WebServicesBook

• Web Services Interoperability Organization

http://www.ws-i.org/

• Resource-oriented vs. activity-oriented Web services by James Snell
http://www-128.ibm.com/developerworks/xml/library/ws-restvsoap/

• RESTful Web Services by Leonard Richardson, Sam Ruby
http://www.oreilly.com/catalog/9780596529260/

Extensible Markup Language (XML)
• Extensible Markup Language (XML)

http://www.w3.org/XML/

• XML Schema

http://www.w3.org/XML/Schema

• XSL Transformations (XSL)

http://www.w3.org/TR/xslt

8

